Small Business Innovation Research Program

ABSTRACTS OF AWARDS FOR FISCAL YEAR 2011

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
INTRODUCTION

The Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA), through the Small Business Innovation Research (SBIR) program, awarded 10 Phase I contracts for FY 2011. These awards are up to $95,000 each, and totaling approximately $1 million. The awards are for a six-month effort to demonstrate the feasibility of innovative approaches to the research topics identified in the “DOC/NOAA SBIR Program Solicitation for FY 2011 (NOAA 2011-1).” Abstracts of the successful Phase I proposals submitted under this solicitation, and brief comments on their anticipated results are provided in this publication.

In Phase II, funding is provided for projects that are most promising after Phase I is completed. These awards can be for up to $400,000 each and for two years. The DOC/NOAA awarded a total of 7 Phase II contracts in FY 2011 for a total of approximately $2.5 million. Abstracts of successful Phase II proposals and comments on their anticipated results are also provided in this publication.

The SBIR program is highly competitive. A total of 169 proposals were received by DOC/NOAA in response to its FY 2011 solicitation. Internal and external scientists and/or engineers independently reviewed the proposals. With the funds available, only 10 were selected for an award. Final selection was based upon the results of the reviews, relative importance to DOC/NOAA needs, relationship to on-going research, and potential for commercialization.
FY 2011 PHASE I AWARD WINNER

FIRM: Sonalysts, Inc.
215 Parkway North
P.O. Box 280
Waterford, CT 06385-1209

AWARD: $95,000

PHONE: 860-326-3621
FAX: 860-326-3748
E-MAIL: bailey_m@sonalysts.com

PRINCIPAL INVESTIGATOR: Margaret Bailey, VP Software Development

TITLE OF PROJECT: Automated Detection of Whale Blows in Infrared Video

SUBTOPIC NUMBER: 8.1.6F

TECHNICAL ABSTRACT:

The gray whale migration generates many hours of video that must be examined carefully to identify passing whales and get an accurate count of their numbers. Unfortunately, humans lack the necessary attention span. To solve this problem, a detector will be developed that can process hours of video, detecting whale blows while minimizing false positives and negatives. With an accurate record of the time and position of whale blows, it is possible to calculate the numbers of animals in each group, their average swimming speed, and, in the longer view, to measure the species abundance. Sonalysts, along with the University of Dayton’s School of Engineering and Whale Acoustics, will design a software architecture that encourages the loose coupling of pluggable components for: input processing of sensor streams, analysis algorithms, visualization systems, and storage components to support the workflow of whale population monitoring. This solution will draw upon our research-grade Heuristic Intelligent Storage System, a distributed, intelligent, large stream data ingest, data mining and storage system. This framework, coupled with image processing algorithms and whale population density estimation expertise, will define a video processing system that will produce more accurate results with less labor.

SUMMARY OF ANTICIPATED RESULTS:

The resulting Robust Analysis and Processing of ISR Data (RAPID) system will benefit whale population monitoring efforts by automating the video and statistical analysis. RAPID will make use of existing algorithms, ingestion systems, and visualization systems while providing a framework for new systems and algorithms to plug into to add processing capability. Utilizing the system for whale avoidance on large ships would benefit surface navies and the commercial shipping industry. RAPID will benefit operators of large sensor grids, including the DoD, DHS, Border Security, and private security firms.
FY 2011 PHASE I AWARD WINNER

FIRM: PCCI, Inc.
300 North Lee Street, Suite 201
Alexandria, VA 22314-2640

AWARD: $95,000

PHONE: 703-229-1108
FAX: 703-684-5343
E-MAIL: rloesch@pccii.com

PRINCIPAL INVESTIGATOR: Robert M. Loesch, P.E., Senior Engineer III

TITLE OF PROJECT: Compact and portable Hyperlite Multi-Occupant Hyperbaric Chamber

SUBTOPIC NUMBER: 8.1.3N,R

TECHNICAL ABSTRACT:

PCCI, Inc. has partnered with SOS Hyperlite, Ltd.; the original developer and sole manufacturer of the Hyperlite Emergency Evacuation Hyperbaric Stretcher (EEHS), the only non-metallic hyperbaric chamber currently constructed in accordance with ASME PVHO-1 for Human Occupancy and meeting U.S. Navy Diving and Hyperbaric Systems Safety Certification. This partnership was originally formed in 2002 to manufacture and market a Government version of the EEHS. Since that time, the technology utilized on the EEHS has been upgraded to improve durability and manufacturing has shifted to the United States. The PCCI team now proposes to demonstrate the technical feasibility of extending the single occupancy EEHS technology to develop a two or three occupant, double-lock folding hyperbaric chamber meeting the SBIR subtopic technical requirements. This new compact, portable and light-weight chamber will allow the transfer of medics in and out at any time, to perform full hands-on medical care and treatment for even the most critically ill patients, while delivering hyperbaric oxygen, the treatment of choice for diving related pressure injuries. This Phase I effort will focus on the engineering to demonstrate the technical feasibility of manufacturing an ASME PVHO-1, and Case 12, compliant chamber capable of compressing occupants to 60 feet depth.

SUMMARY OF ANTICIPATED RESULTS:

In Phase I, the PCI team will prepare a 35% design package for use in Phase II. The 35% design package will document the engineering of a large diameter hyperlite unit suitable for the treatment of an unconscious patient by a medic, or for the treatment of two patients simultaneously. Documentation will include specification of a suitable tensile braid and AutoCAD drawings of a large diameter window and door assembly, end dome assemblies, protection ring seating system, and transportation and packaging case.
FY 2011 PHASE I AWARD WINNER

FIRM: Prescient Weather, Ltd.
200 Innovation Blvd., Suite 257
State College, PA 16803-6602

AWARD: $94,969

PHONE: 814-466-2331
FAX: 814-234-5869
E-MAIL: john.dutton@prescientweather.com

PRINCIPAL INVESTIGATOR: John A. Dutton, President

TITLE OF PROJECT: Client-Centered Calibration of the NOAA Climate Forecast System

SUBTOPIC NUMBER: 8.2.1C

TECHNICAL ABSTRACT:

Prescient Weather proposes four Phase I tasks to increase the value of the new NOAA Climate Forecast System to commercial customers. The capabilities demonstrated and explored in Phase I will be developed and integrated in Phase II as components of a new Seasonal Information and Decision Support System (SIDSS) for our World Climate Service customers. The Phase I tasks are:

- Improve season forecast calibration with a new climate-conserving calibration algorithm that produces relatively flat rank probability diagrams;
- Convert calibrated forecasts of meteorological variables into forecasts of impact and decision variables such as degree days or wind power availability;
- Explore calibration of two-to-four week forecasts with conditioning on expected flow patterns;
- Explore the potential of model output statistics (MOS) to calibrate and improve weekly and monthly forecasts of seasonal variability.

Several of the tasks will explore the use of principal component methods to project forecasts on the historical verification data and to define flow regimes for conditional calibration.

The SIDSS development in Phase II will focus on the client decision context, present historical and predicted information including numerical and analog forecast, and facilitate client development of individualized forecasts. It is a key part of our commercialization strategy.

SUMMARY OF ANTICIPATED RESULTS:

Client-centered calibration of the new NOAA Climate Forecast System will improve the skill and reliability of the forecasts on the scale of weeks and months thus enhancing their value to a wide range of activities impacted by weather or climate. A focus on the client decision context with a Seasonal Information and Decision Support System (SIDSS) to present the calibrated forecasts will further increase their commercial value.
FY 2011 PHASE I AWARD WINNER

FIRM: Hyperion Technology Group, Inc.

AWARD: $94,896.16

PHONE: 662-823-0601
FAX: 662-823-0501
E-MAIL: gcarter@hyperiontechgroup.com

PRINCIPAL INVESTIGATOR: Geoffrey E. Carter, P.E., President

TITLE OF PROJECT: Multi-Modal Sensor with Real-Time Telemetry For Storm Surge and Other Meteorological Measurements

SUBTOPIC NUMBER: 8.3.6N

TECHNICAL ABSTRACT:

Storm surge poses a grave threat to both life and property as hurricanes make landfall. The ability to monitor surge in real-time using a densely-space network of sensors with integrated data recording and telemetry would provide NOAA with a unique capability. Our approach is to offer a system which incorporates a flexible multi-modal data acquisition platform with integrated telemetry for real-time control and monitoring. The sensors will be designed for densely-spaced non-permanent deployments onshore in regions of interest in advance of hurricanes. The system will be very low power, hardened for extremely severe conditions, and capable of being installed quickly with minimal training or specialized expertise. This sensor platform will support the measurement of surge level, barometric pressure, temperature, humidity, and anemometry. Additional sensor modules could be developed in future phases of research and connected to the system controller via a standardized serial data bus. A GPS receiver will be used to provide real-time geolocation and temporal alignment of the sampled data. Both cellular-modems and satellite-based will be used for telemetry and control.

SUMMARY OF ANTICIPATED RESULTS:

This sensor technology would provide the government with an enhanced capability for the real-time collection of surge level and other meteorological data in severe weather events. This information could be quickly disseminated to support the various levels of NWS forecasting, FEMA emergency responders, and damage assessment teams. This sensor would also be applicable to the measurement of environmental conditions in response to man-caused disasters or other national emergencies. It may also be marketed as a decision support tool for state and local governments in flood plain regions, a data gathering device for academic research laboratories, and a disaster assessment tool supported by the insurance industry.
Salo IT Solutions, Inc. will design and implement the Wide-area, Environmental Sensing and alerTing network (WESTnet) protocols, a next-generation suite of wireless network protocols that will provide enhanced services for hydrologic warning systems and other large-scale, wide-area environmental monitoring activities. The WESTnet protocols will offer significant functionality over that available with the existing solutions; they will also provide an upgrade for both the original ALERT protocol, which is widely deployed in hydrologic warning systems, and the more recent ALERT2 protocols. They will provide two-way communications, which will enable hydrologic warning systems to remotely control devices such as distant warning sirens, as well as manage nodes remotely. The WESTnet protocols can coexist with the ALERT protocol or the ALERT2 network. Perhaps more importantly, the WESTnet protocols will permit shared networks to be deployed that support both near-real-time hydrologic warning and non-real-time environmental monitoring, such as water quality monitoring. These shared networks may permit costs to be shared between, for example, a hydrologic warning system and an environmental monitoring system that covers the same geographical area.

SUMMARY OF ANTICIPATED RESULTS:

This Phase I project will develop, test and evaluate a proof-of-concept (POC) software implementation of the WESTnet protocols. This POC software will demonstrate the feasibility of a Phase II project that uses a commodity computer running the Linux operating system as the hardware and software platform upon which a successful WESTnet product can be built.
Severe weather impacts our daily lives, society and nation’s economy. From an average of $10B (2005 dollars) annual loss due to tropical cyclones since 1900 to $200B in the commercial shipping industry that is threatened by severe ocean storms to the hundreds of lives and assets being lost in the $20B recreational boating industry. In these cases and many more, accurate now-casting and forecasting could prevent these losses and reduce risks. Key observation to improve our knowledge of the weather is the ocean vector wind. NOAA is embarking on an ambitious but needed effort to launch a new satellite-based instrument called the Dual Frequency Scatterometer (DFS) that will provide accurate global mapping of the ocean vector wind in a timely manner. The Advance Wind and Rain Airborne Profiler (AWRAP) can play a pivotal role for this mission by providing critical measurements to improve the geophysical model function that DFS will relay to estimate the winds. However, AWRAP requires a novel antenna to collect dual polarized, dual wavelength measurements. This proposed Phase I study will develop a single aperture, narrow beam C/Ku-band polarimetric antenna for AWRAP that will enable the acquisition of the necessary measurements from the NOAA WP-3D aircraft.

SUMMARY OF ANTICIPATED RESULTS:

The Phase I and II effort will result in the development of a low profile, single aperture, dual wavelength, dual polarized antenna. Using a hybrid design approach, C and Ku-band radiating elements that support vertical and horizontal polarization will be interleaved to efficiency utilize the available aperture. With this antenna, the AWRAP system can be significantly reduced in size and its sensitivity greatly enhanced. This new system can provide the weather reconnaissance, forecaster and weather modeling communities with a powerful new tool that can map the atmospheric and ocean vector winds and precipitation. This system can also provide a high resolution, all weather mapping system for search and rescue operations and hazard mitigation operations such as open ocean oil spills.
FY 2011 PHASE I AWARD WINNER

FIRM: Hyper Sensing, LLC
14 La Pointe Terrace
Madison, WI 53719

AWARD: $94,946

PHONE: 608-628-2468
FAX: 608-836-8252
E-MAIL: ah7117@gmail.com

PRINCIPAL INVESTIGATOR: Allen Huang, Principal Scientist

TITLE OF PROJECT: Development of a GPU-Based High-Performance Community Radiative Transfer Model

SUBTOPIC NUMBER: 8.3.5D

TECHNICAL ABSTRACT:

Computation of the radiative transfer model for a hyperspectral sounder with thousands of spectral channels is very time-consuming. Consequently, operational data assimilation systems can assimilate only a few hundred channels. The radiative transfer model is very suitable for GPU implementation to take advantage of GPU massively parallel computing capability, where radiances at various channels can be calculated simultaneously. Our recent paper demonstrated that a GPU-based radiative transfer model for the IASI sounder with 8461 channels could be 1523x faster than its original single-threaded CPU version. It means that one day's amount of 1,296,000 IASI spectra can be calculated within 15 minutes on a low-cost GPU computer, whereas the original CPU code would take more than 15 days in the host PC. The innovation of this work is our development of heterogeneous pipelining and asynchronous transfer between CPUs and GPUs for the significant speedup.

Inspired by this success, we propose to develop a GPU-based high-performance Community Radiative Transfer Modeling (CRTM) for NOAA. During Phase 1, we will demonstrate the feasibility of further enhancing our GPU techniques to allow simultaneous computation of multiple hyperspectral radiances spectra on GPUs. We expect to double the speedup (~3000x) for use in data assimilation and atmospheric soundings.
FY 2011 PHASE I AWARD WINNER

FIRM: Toyon Research Corporation
6800 Cortona Drive
Goleta, CA 93117-3021

AWARD: $95,000

PHONE: 805-968-6787
FAX: 805-685-8089
E-MAIL: ksullivan@toyon.com

PRINCIPAL INVESTIGATOR: Kevin J. Sullivan, Vice President & Senior Scientist

TITLE OF PROJECT: Program for Estimating Whale Migration Statistics

SUBTOPIC NUMBER: 8.1.6F

TECHNICAL ABSTRACT:

Toyon proposes to develop software that can process infrared video streams to automatically detect gray whale blows. Additionally, the software will count the number of blows and estimate the speed and the number of whales that are present. We will make use of a novel technique for whale blow detection that Toyon has demonstrated on infrared video of humpback whales. The approach makes use of both the spatial and temporal characteristics of the whale blow to effectively detect it without large numbers of false alarms. In order to estimate the speed and number of whales, we will use a particle filter. We will prove the feasibility of our algorithms in Phase I by processing video supplied by the government and video collected by Toyon at a nearby gray whale migration route. We propose to work with the Gray Whales Count organization, whose whale counting site is located within five miles of Toyon, and/or other organizations specified by the government to collect infrared video of migrating whales and to compare our results with the results collected by trained humans.

SUMMARY OF ANTICIPATED RESULTS:

The successful completion of this work will result in the creation of software that can automatically detect whales in infrared video. This has great utility for biologists that seek to collect whale data. Additionally, this technology can be used to detect whales in danger of being struck by large boats and ships, cueing an alarm that can be used to avoid collision.
FY 2011 PHASE I AWARD WINNER

FIRM: Dynaflow, Inc.
10621-J Iron Bridge Road
Jessup, MD 20794-9381

AWARD: $95,000

PHONE: 301-604-3688
FAX: 301-604-3689
E-MAIL: gregl@dynaflow-inc.com

PRINCIPAL INVESTIGATOR: Gregory Loraine, Ph.D., Senior Research Scientist

TITLE OF PROJECT: Extraction of Bioproducts from Algae in Water using Cavitating Jets

SUBTOPIC NUMBER: 8.1.2SG

TECHNICAL ABSTRACT:

One of the most promising biomass sources for fuels and other feedstocks is photosynthetic algae. Algae can produce lipids, proteins, and other compounds, and can be grown in salt water. Current production practices rely on expensive means of harvesting, concentrating, and extracting the algae. This makes the “bio-crude” produced by algae more expensive than petroleum. Recovering the cellular contents of the algae directly from the growth media would reduce production costs and improve profitability. This proposal is to develop a method for lysing the algae and recovering the bio-crude without pre-concentrating or dewatering.

Hydrodynamic cavitation using submerged jets uses fluid shear flow to create high pressure fluctuations in the shear layer to cause bubbles to grow and collapse using a fraction of the energy required for ultrasonic cavitation. Cavitation has been shown to have the capability to rupture algal cell membranes and release the cell contents. Cavitating jets also create clouds of fine bubbles that can attach to lipids in the water and lift them to the surface. By controlling the creation and collection of the resulting foam the lipids can be concentrated and recovered from the growth media with minimal energy input.

SUMMARY OF ANTICIPATED RESULTS:

This project will result in a technology that can recover high value cellular materials without having to harvest and concentrate the algae prior to extraction. This method will recover lipids and other bio-products directly from the growth tanks. This will greatly increase the profitability of biofuel production from algae. It can also be applied with other biotechnologies.
FY 2011 PHASE I AWARD WINNER

FIRM: Peregrine Power, LLC
27350 SW 95th Avenue, Suite 3022
Wilsonville, OR 97070-7709

AWARD: $94,945

PHONE: 503-682-7001
FAX: 503-682-6014
E-MAIL: dmarckx@peregrinepower.com

PRINCIPAL INVESTIGATOR: Dallas Marckx, Managing Member (CEO)

TITLE OF PROJECT: Wave Energy Harvesting System

SUBTOPIC NUMBER: 8.1.2SG

TECHNICAL ABSTRACT:

The applicant will develop a wave energy harvesting system for NOAA buoys. It will be entirely self-contained (no protruding elements), modular, scalable, and easily deployed. The system employs a unique, inertial mechanism that responds to acceleration forces created by waves. This mechanism will be combined with (1) a proprietary generator that is sensitive to very low levels of torque and has essentially no cogging torque to overcome, and (2) an electronic power conditioning and management subsystem, which can receive erratic power from intermittent water movement and produce regulated DC for charging batteries or other uses.

SUMMARY OF ANTICIPATED RESULTS:

The result will be that NOAA will have a highly versatile wave energy scavenging system that can be used on many different types of data buoys for charging batteries, thus minimizing the costly requirement of servicing batteries by ship. In addition, the scavenging system can be used by the Navy for military purposes, by the Coast Guard for thousands of navigation buoys and by civilian coastal defense authorities.
FY 2011 PHASE II AWARD WINNER

FIRM: WorldWinds, inc.
1010 Gause Blvd., Suite 48
Slidell, LA 70458-2940

AWARD: $399,961

PHONE: 985-641-8661
FAX: 985-288-6115
E-MAIL: evalenti@worldwindsinc.com

PRINCIPAL INVESTIGATOR: Elizabeth Valenti, President/CEO

TITLE OF PROJECT: New NOAA-Derived Data Products for the TV Broadcast Market

SUBTOPIC NUMBER: 8.3.2D

TECHNICAL ABSTRACT:

This Phase II SBIR will execute the research to commercialization process developed in Phase I, when WorldWinds, Inc. developed and implemented a procedure to showcase graphical NOAA products for on-air consumption by the general public. Through collaboration with Baron Services, Inc., of Huntsville, AL, the Phase I project developed a prototypical composite Blended Total Precipitable Water product that was ingested by Baron's OMNI and VIPIR commercial weather display packages. During the three week beta test period, a seven station beta test group was educated on the product's scientific merit and each station was updated daily as to the product's application. The process developed in Phase I: 1) prototypical product development, 2) education and training, and 3) on-air beta testing, will again be used in Phase II to introduce potential new data products to the television broadcast market. Several new Phase II candidate products have already been identified, including: bTPW Wind Analysis Overlay; Surface Wind Analysis; Merged Radar and Satellite Derived Rainfall Rate and Reflectivity; Drought Indices, Seasonal Forecasts, and Percent of Normal Precipitation; Great Lakes Sea Ice Analysis; Fire, Smoke, and Ash; Forecast Rainfall; Saharan Air Layer Satellite Analysis Schemes; Ocean Currents; Harmful Algae Blooms; and Emergency Response and Recovery.

SUMMARY OF ANTICIPATED RESULTS:

The main objective for this work is to introduce new NOAA derived data products into the existing television broadcast supply stream through already established commercial weather display packages. Based on Phase I results, the team expects that visual enhancement, as well as filling of data void regions, will be necessary to meet the expectations of television viewers. Eleven potential new products are identified in this proposal. A reasonable expectation is to have 5-6 new NOAA derived products permanently embedded into Baron Services' OMNI and VIPIR commercial weather display systems. Additionally, as new satellite data sources become available in the future, they may be evaluated for inclusion into the TV broadcast data stream.
FY 2011 PHASE II AWARD WINNER

FIRM: Codar Ocean Sensors, Ltd.
1914 Plymouth Street
Mountain View, CA 94043-1796

AWARD: $399,992.01

PHONE: 408-773-8240 x18
FAX: 408-773-0514
E-MAIL: chad@codar.com

PRINCIPAL INVESTIGATOR: Chad Whelan, Project Manager

TITLE OF PROJECT: HF Radar Calibration with Automatic Identification System Ships of Opportunity

SUBTOPIC NUMBER: 8.4.1N

TECHNICAL ABSTRACT:

Over 300 HF RADARs worldwide are producing ocean surface data that is used in oil spill response, search & rescue, vessel traffic management, and research. In the U.S. there are 100+ systems supplying real-time data to the Coast Guard, NOAA IOOS, OR&R and other operational groups. To provide the highest quality data to stakeholders, systems should be calibrated by measuring the receive antenna pattern. For the typical HF radar, this measurement is currently made with a portable transponder on a boat 1-2 km away. This method, while robust, is costly and limited by sea conditions. We demonstrated in Phase I that by associating AIS vessel identifications, which provide ship positions, with vessel radar echoes in HF radar data it is possible to reproduce the antenna pattern. The objective of Phase II research is to implement the method operationally. The prototype will consist of software to acquire AIS ship data and combine it with HF radar cross-spectra to produce antenna pattern measurements and their statistics. To accomplish this objective we will answer the remaining research questions from Phase I, expand the method to other operational HF radar bands (5, 25 and 42 MHz), and develop quantitative data quality metrics.

SUMMARY OF ANTICIPATED RESULTS:

Prototype software which will collect HF RADAR receive antenna pattern data, monitor differences in real time between collected pattern data and pattern being used on site for data processing, warn of detected pattern changes and provide updated pattern for replacement.
FY 2011 PHASE II AWARD WINNER

FIRM: ProFishent, Inc.
17306 NE 26th Street
Redmond, WA 98052-5848

AWARD: $298,427

PHONE: 425-883-9896
FAX: 425-869-5364
E-MAIL: davidp@profishent.com

PRINCIPAL INVESTIGATOR: David B. Powell, Ph.D., Vice President, R&D

TITLE OF PROJECT: Natural Adjuvants to Enhance Efficacy of Viral Vaccines for Mariculture

SUBTOPIC NUMBER: 8.1.2F

TECHNICAL ABSTRACT:

Marine aquaculture production now exceeds 20 million metric tons annually (FAO 2010) but viral diseases are still a major threat to the expansion of sustainable mariculture systems (National Marine Fisheries Service 2007). Pathogenic viruses continue to devastate many fish and shellfish operations every year (ICES Mariculture Committee 2004, Lightner 2011). To date, vaccines against aquatic animal viruses have generally provided poor protection, are too expensive, and/or must be injected intramuscularly (e.g., DNA vaccines). In response, we will expand and intensify development of innovative biological adjuvant systems initiated in our Phase I trials. We discovered that unique natural marine and terrestrial micro-structures bound to viral antigens can be delivered to gills and mucosal surfaces of salmon to boost specific immune responses against a viral pathogen. We use a nanotechnology-based dynamic light scattering laser instrument to verify attachment of viral antigens or DNA vaccines. Interferon-associated genes and specific antibody titers will be measured by quantitative PCR, ELISA, and virus neutralization tests. Needle-less, immersion immunizations with test formulations will be assessed in fish for safety and efficacy. Multiple, additional in vivo pathogen challenges will be conducted to evaluate new prototype vaccines for relative efficacy and commercialization potential in Phase III field trials.

SUMMARY OF ANTICIPATED RESULTS:

Effective, immersion anti-viral vaccines could be a major boost to aquaculture sustainability, export market access, and profitability. We anticipate that this new platform technology will provide an economical, non-toxic, “micro-attachment” vaccine delivery system for enhanced infectious disease prevention and control. If successful, these treatments will promote an increased choice of cultured species, greater predictability of production for investment, and a substantial reduction in actual and perceived environmental impact. The growth of environmentally sustainable aquaculture systems will help the United States reduce huge seafood trade deficits (Nash 2004).
FY 2011 PHASE II AWARD WINNER

FIRM: Droplet Measurement Technologies
2545 Central Avenue
Boulder, CO 80301-2865

AWARD: $399,962

PHONE: 303-440-5576
FAX: 303-440-1965
E-MAIL: glkok@dropletmeasurement.com

PRINCIPAL INVESTIGATOR: Gregory L. Kok, Director of R & D

TITLE OF PROJECT: Aerosol Particle Spectrometer with Depolarization and Fluorescence (APSD-F)

SUBTOPIC NUMBER: 8.2.2C

TECHNICAL ABSTRACT:

An operational optical particle counter will be built, extensively characterized and evaluated that measures the size and shape of aerosol particles with optical diameter from 0.1 to 10 μm. This instrument will distinguish different species of dust and volcanic ash from other types of aerosol particles, and provide an estimate of the aerosol optical properties and produce compositional information related to a particle’s refractive index and shape. Some types of biogenic and organic aerosols will also be identified from the measurements.

The size, shape, refractive index and some compositional information of particles is derived from the measurement of light scattered in multiple directions, depolarization of the scattered light by aspherical particles, and the fluorescence by some species of biogenic and organic aerosols when excited by the 405 nm source laser.

The size, weight and power of the instrument will be optimized to facilitate operation on a wide variety of ground-based, airborne and ship-borne measurement platforms, including unmanned aerial vehicles.

SUMMARY OF ANTICIPATED RESULTS:

The Phase II activities will result in a fully operational, well-characterized aerosol particle size and shape analyzer. The measurement size range will be 0.1-10 microns covering a majority of the accumulation and coarse mode aerosols. In addition to the measurements of particle size and shape, particle fluorescence will also be measured allowing identification of particles with a biological origin. Comparison of the measured aerosol parameters will allow classification into particles originating from pollution, windblown dust, volcanic ash, urban dust, and biological origins.
FY 2011 PHASE II AWARD WINNER

FIRM: Riverside Technology, Inc.
2950 East Harmony Road, Suite 390
Fort Collins, CO 80528

AWARD: $400,000

PHONE: 970-484-7573
FAX: 970-484-7593
E-MAIL: steve.malers@riverside.com

PRINCIPAL INVESTIGATOR: Steve A. Malers, Senior Systems Engineer

TITLE OF PROJECT: Climate Information Management Toolkit (CIMT)

SUBTOPIC NUMBER: 8.2.2C

TECHNICAL ABSTRACT:

The SBIR solicitation expressed the need for tools to process data from disparate sources in various formats and generate drought-relevant data products. NIDIS also recognizes a need to span organizational boundaries to provide access to integrated drought information for use in water management. The Phase I SBIR project resulted in prototype Climate Information Management Toolkit (CIMT) software that automates data collection, processing, and product generation. Phase II will focus on enhancing the prototype CIMT to a production level suitable for application by local water organizations and NIDIS. Riverside’s relationship with local, regional, and state organizations in Colorado allows for a bottom-up application of these tools, while coordinating with NIDIS pilot projects and agency efforts to meet national goals. Specific tasks include: improved implementation of existing web services, enabling new web services for important local data sets, implementing tools to compute water supply indices and triggers, and enhancing tools to consider climate change in data products. Stakeholders in the water community will have access to these tools, which can be integrated with the NIDIS Drought Portal. Riverside’s track-record with stakeholders, technical expertise, and ability to integrate with ongoing efforts provides an opportunity to demonstrate NIDIS efforts at the local level.

SUMMARY OF ANTICIPATED RESULTS:

This project will directly benefit water organizations through improved tools and data products related to drought and water supply. Implementations at a local level will be consistent with NIDIS pilot projects and will allow transfer to other regions, and implementation on the NIDIS portal. Riverside will develop additional expertise related to data, drought, and climate change, which will be parlayed into additional commercial opportunities.
FY 2011 PHASE II AWARD WINNER

FIRM: Ocean Approved, LLC
188 Presumpscot Street
Portland, ME 04103-5206

AWARD: $300,000

PHONE: 207-409-6485
E-MAIL: pdobbins@oceanapproved.com

PRINCIPAL INVESTIGATOR: Paul Dobbins, President

TITLE OF PROJECT: Development of Native Kelp Culture System Technologies to Support Sea Vegetable Aquaculture in new England Coastal Waters

SUBTOPIC NUMBER: 8.1.7SG

TECHNICAL ABSTRACT:

This Phase II research expands Phase I research on Saccharina latissima and is to design and develop “seed” nursery methodologies for the development of commercial-scale production of juvenile kelp plants including Alaria esculenta and Laminaria digitata. The project objectives include:

1. Isolate and maintain cultures of New England species of Alaria esculenta and Laminaria digitata to be used as “seed stock” for the production of juvenile plants.

2. Identify and develop the highest yield strains of Saccharina latissima, Alaria esculenta and Laminaria digitata.

3. Develop efficient, cost effective, and scalable production, transport, grow-out, and harvest methodologies with sufficient simplicity to accommodate participation of a medium skilled workforce.

4. Create a detailed protocol for culture maintenance and production of young kelp plants to facilitate transfer of the technology to other commercial entities and educational institutions.

This project is a collaborative effort between Ocean Approved, the University of Connecticut, and the Bridgeport Regional Aquaculture Science Technology Education Center, and supports the development of a new aquaculture sector, allowing the United States to participate in the US$7 billion dollar cultivated sea vegetable market.

SUMMARY OF ANTICIPATED RESULTS:

The anticipated results of the proposed research will be the continued development of nursery culture technologies and methodologies to aid in the creation of commercial-scale mass production culture system for cold-water kelp species including Saccharina latissima, Alaria esculenta and Laminaria digitata. Moving from wild harvesting to sustainable harvests from aquaculture operations is a critical commercialization step that allows Ocean Approved to meet the growing demand for its innovative fresh frozen kelp products and provides an important new sustainable vegetable source for U.S. consumers.
FY 2011 PHASE II AWARD WINNER

FIRM: Oscilla Power, Inc.
419 Wakara Way, Suite 207C
Salt Lake City, UT 84108

AWARD: $299,985

PHONE: 801-897-1221
FAX: 801-618-4289
E-MAIL: nair@oscillapower.com

PRINCIPAL INVESTIGATOR: Balakrishnan Nair, CTO

TITLE OF PROJECT: Cost Competitive Wave Energy Without Moving Parts

SUBTOPIC NUMBER: 8.1.5SG

TECHNICAL ABSTRACT:

Oscilla Power, Inc. (OPI) is developing a utility-scale wave energy harvester that is enabled by low cost and readily-available magnetostrictive alloys. This device, which utilizes no moving parts, has the potential to deliver predictable quantities of electric power to coastal utilities, industrial users, and remote facilities at costs competitive with coal or gas. The Phase I project demonstrated that required electromagnetic performance could be obtained through optimization of the power-take-off unit configuration. In the Phase II project, OPI will optimize, design and build a sea-worthy prototype that can produce enough power to recharge batteries needed for buoy-based measurement systems. OPI and its sub-contractor, the University of Washington Applied Physics Laboratory, will demonstrate this prototype in Puget Sound. The project will demonstrate the commercial viability of the device and enable scale up to kilowatt-class systems in Phase III.

SUMMARY OF ANTICIPATED RESULTS:

Successful harvesting of energy from the ocean can help to relieve the load at the point of demand on some of the most heavily populated regions of the United States. In the Phase I Project, we demonstrated greater than 1 Tesla change per strain cycle in magnetic field in low-cost magnetostrictive alloy components by identifying optimal power take off unit configurations. In the Phase II Project, we will optimize, build and demonstrate a device in ocean waters at Puget Sound. By achieving this goal, we will significantly mitigate investor risk and facilitate successful Phase III fund raising towards utility scale device development and deployment. Successful development and demonstration of the magnetostrictive wave energy harvester can enable electricity production from the ocean at costs competitive with conventional approaches such as coal and natural gas.